Sistemi operativi

Un sistema di elaborazione dati può essere così rappresentato:

- **dispositivi fisici**: (CHIP, alimentatori, memorie, ...)
- software primitivo che controlla i dispositivi del livello inferiore mediante codice di microprogramma (generalmente su ROM)
- **linguaggio macchina**: istruzioni elementari per muovere dati, eseguire calcoli e comparare valori; su questo livello i dispositivi I/O sono controllati da valori caricati in speciali registri (registri d'interfaccia)
- **sistema operativo vero e proprio**, che nasconde la complessità dei livelli inferiori e fornisce al programmatore un insieme di istruzioni di alto livello (**KERNEL MODE**)
- **software di sistema**: interprete dei comandi (shell), web browser, editor, interfaccia grafica (**USER MODE**)
- programmi applicativi (Word, Excel, Eclipse, ...)

Concetti introduttivi

Un moderno sistema di calcolo comprende:

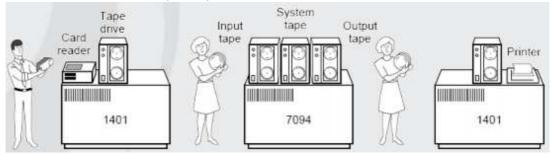
- una (ma generalmente più) CPU
- una memoria centrale (core memory)
- cache
- clock
- terminali
- dischi
- interfacce di rete
- input/output testuale
- input/output multimediale
- dispositivi di interfaccia ad altri sistemi

Software che gestisca tutte le parti del sistema e che fornisca un'opportuna interfaccia all'utente:

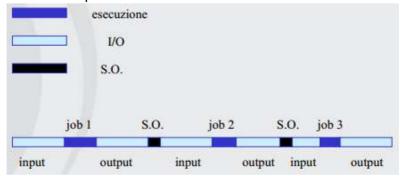
- || Software:
 - o **programmi di sistema** (o di base) che rendono facilmente disponibile all'utente le potenzialità offerte dalla macchina (hardware). Una parte consistente del software di base è costituito dal **Sistema Operativo**
 - o programmi applicativi
- Il **S.O.** può essere considerato come una interfaccia tra hardware e utente
 - o II S.O. deve rendere la macchina trasparente all'utente
 - o Quindi saper utilizzare una macchina significa realmente conoscere e saper utilizzare il suo S.O.
 - Macchine di architettura molto diversa a livello hardware possono utilizzare lo stesso S.O. esso svolge le stesse funzioni e si presenta all'utente nello stesso modo

Classificazione dei S. O.

L'evoluzione delle architetture dei calcolatori segna anche l'evoluzione dei sistemi operativi. In ordine cronologico:


- 1. Dedicati
- 2. A lotti (batch)
- 3. Multiprogrammazione
- 4. Interattivi (Time-Sharing)
- 5. Quarta generazione (Personal computer)
- 6. Quinta generazione (**Mobile**)

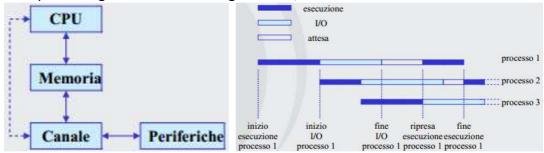
Prima generazione 1945-1955


- I calcolatori erano basati sulle valvole,
- praticamente non vi era S.O.
- Sistemi dedicati quasi esclusivamente per il calcolo numerico/scientifico
 - o Howard Aiken
 - o John von Neumann
 - o Presper Eckert
 - William Manchley
 - o Konrad Zuse
- Caratteristiche della 1° generazione
 - o un unico staff per
 - progetto
 - costruzione
 - programmazione
 - esecuzione
 - manutenzione
 - o tutti i programmi erano scritti in linguaggi macchina (non esisteva l'assembler)
 - o i linguaggi di alto livello di programmazione erano sconosciuti
 - o i **sistemi operativi erano assenti** (controlli fisici d'integrità delle valvole)
 - o negli ultimi anni, si introdussero i primi sistemi a schede perforate

Seconda generazione: 1955-1965

- S.O. batch (gestione a lotti)
 - o è determinata dall'introduzione di importanti innovazioni tecnologiche: transistor
 - o i calcolatori potevano essere prodotti e **venduti** a clienti
 - o nascono figure professionali distinte nel processo di **produzione di un programma** (JOB)
 - o **costi di milioni di dollari** (solo Università e grandi industrie)
- un programmatore scrive il programma su carta (Fortran, Assembler), e perfora le schede;
- le riceve un operatore che **le inserisce in una coda dei programmi**, le immette nel calcolatore e, se necessario, carica l'opportuno compilatore;
- l'operatore consegna poi al programmatore l'output finale
- **problema**: enorme spreco di tempo
 - Caricamento nastro compilatore, esecuzione compilatore, scaricamento compilatore, caricamento assembler, esecuzione assembler, scaricamento assembler, caricamento oggetto, esecuzione programma ..
- **soluzione**: sistemi a lotti (batch)

- Nati per sfruttare meglio la velocità crescente delle macchine: eliminano i tempi morti tra programmi successivi di utenti diversi automatizzando le operazioni manuali
- Un insieme di lavori (jobs) viene accorpato in un lotto (batch) tramite un calcolatore ausiliario e trasferito su una unità di ingresso veloce (nastro)
- Ogni lavoro viene caricato da un operatore ed eseguito in sequenza senza interruzione fino al termine
- L'output viene scritto su un secondo nastro invece di essere stampato (stampa off line)
- La **CPU viene ancora sottoutilizzata** perché, durante le operazioni di I/O deve adeguarsi alla bassa velocità delle periferiche

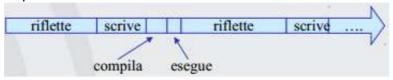


• Si noti che servono due sistemi distinti.

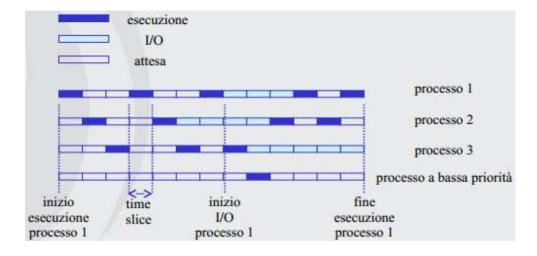


Terza generazione: 1965-1980

- Circuiti integrati
- Multiprogrammazione
 - Con la multiprogrammazione (multitasking) più di un programma viene caricato in memoria contemporaneamente. In genere si parla di **processo**: sequenza di istruzioni eseguite dalla CPU per portare a termine un programma
 - Le operazioni di I/O di un programma sono sovrapposte temporalmente all'esecuzione delle istruzioni di un altro programma
 - o ciò è possibile grazie al canale che gestisce l'I/O



- Gestione dei processi
 - o Il **multitasking** non è in grado di distinguere fra programmi che richiedono un uso frequente delle periferiche, da quelli che richiedono l'utilizzo per lunghi tempi della CPU (es: programmi di elaborazione matematica). Se uno di questi programmi ottiene la **CPU non la rilascia spontaneamente**, bloccando gli altri programmi.



• S.O. Time Sharing

- Nei S.O. interattivi (Time sharing) il tempo di utilizzo della CPU viene suddiviso dal sistema operativo in fette (time slice di durata 50-500 ms)
- o Ogni processo in memoria riceve a turno l'uso della CPU per una unità di tempo
- Al termine del time slice il controllo torna comunque al S.O. che decide a chi affidare la CPU
- o Sono S.O. usati sopratutto per lo sviluppo di software in ambiente multiutente
- L'utente lavora al terminale e ha l'impressione di avere la macchina a sua completa disposizione

- o L'**overhead** per la gestione della CPU può diventare significativo con molti processi attivi oppure con time slice molto piccolo
- Dopo i primi sistemi CTSS (MIT) (Compatible Time-Sharing System) sono derivati gli attuali sistemi UNIX (Ken Thompson)

• Batch e Time Sharing

ATA	Batch	Time Sharing
Obiettivo principale	Massimizza l'uso del processore	Minimizza il tempo di risposta
Sorgente dei comandi al Sistema Operativo	Job control language	Comandi da terminale

Quarta generazione 1980

- Sono basati sulla tecnologia VLSI (Very Large Scale Integration)
- Due sistemi operativi hanno dominato la scena dei Personal Computere delle Workstation
 - o MS-DOS (Microsoft) con il derivato Windows
 - L'utilizzo della CPU non è più critico (1 solo utente)
 - Non vi è concorrenza (primi esemplari)
 - Non vi sono meccanismi di protezione (vedi virus)
 - o UNIX (Bell Labs)

Quinta generazione 1990

- Sistemi mobile
- Personal Digital Assistant (PDA)
- Telefoni cellulari
- Problemi:
 - o Memoria limitata
 - o Processori lenti
 - o Schermo piccolo

- Reti
- La crescita di reti di PC e di Web Site ha permesso lo sviluppo di
 - Network Operating Systems
 - l'utente "vede" più calcolatori, può accedere a macchine remote e copiare file; ogni macchina ha il suo sistema operativo locale
 - o **Distributed** Operating Systems
 - appare all'utente come un tradizionale sistema monoprocessore anche
 - se è composto da più processori; l'esecuzione di programmi può essere
 - a carico di macchine diverse (anche in parallelo)
 - Due casi: gli N processori non condividono o condividono clock e/o
 - memoria

• Sistemi operativi **Real Time**

- Sistemi operativi al servizio di una specifica applicazione che ha dei vincoli precisi nei tempi di risposta
- o II S.O. deve garantire un tempo massimo entro il quale mandare in esecuzione un programma a seguito di un evento
 - Gestione di strumentazione
 - Controllo di processo
 - Gestione di allarme
 - Sistemi transazionali (banche, prenotazioni)
- In generale si ha un sistema real-time quando il tempo di risposta dalla richiesta di esecuzione di un processo al completamento della stessa è sempre minore del tempo prefissato